
WDASM
Windows Disassembler 1.2

User's Manual
Index

Introduction and Specifications.............................. page 2
Operation.. page 2

Opening Files.. page 2
Viewing Files... page 2
Generating A Source Text File.................. page 3

Differences Between versions 1.2 and 1.1.............. page 4
Registration... page 5
Liscense... page 6
Warranty Disclaimer and Copyright........................ page 6

Version 1.2 of this software is shareware, user supported software that is distributed to the user without cost. You
are allowed to evaluate this product on your own system on a trial basis. If you find this product to be of value and intend
to continue using it, then you are asked to register your copy and pay the license fee. Registered users of WDASM 1.0
and 1.1 are entitled to a free upgrade to version 1.2. Commercial and/or business use of WDASM by non-registered users
is prohibited.

WDASM Windows Disassembler 1.0 Program Documentation 2
Introduction

Windows Disassembler is created specifically for disassembling Windows executables and dynamic link libraries.
It allows you to browse at the assembly language code of a program without having to write it to a file. WDASM generates
procedure directives, as well as all of the literal Windows API function call names.

Specifications

Files
Works on Windows 3.x executables and dynamic link libraries only.
Instruction Set
Translates all instructions within the 286 instruction set with the exception of the following multi-tasking instructions: LAR,
LGDT, LIDT, LLDT, LMSW, LSL, LTR, SGDT, SIDT, SLDT, SMSW, STR, VERR, and VERW.
Operating System and Hardware
Requires at least DOS 4.0, Windows 3.0, and a 286 or above IBM compatible computer. Installation of SMARTDRV
(which comes with Windows) is recommended.

Operation

Opening Files
The default extension if you do not specify one is ".EXE". Windows Disassembler views one file at a time. If you

open a file while another one is already open, the old file will be automatically closed. When opened, the file's assembly
language code is appears on the screen, provided that the file has a DOS executable file header, a new executable file
header, and at least one segment. Otherwise, a dialog box will inform you that the file does not meet a particular
specification.

Viewing Assembly Language Code
Viewing code in the display window is presented as an alternative to generating a gigantic assembly language

source code file, since some programs are bound to be quite large, and you may merely want to browse at a program's
machine code.

The code that initially appears in the window when a file is opened is the first segment within the file. Numbers
are assigned to segments according to their chronological order within the new executable file header. Windows
Disassembler displays one segment at a time within the window. The View | Segment command must be used to go to
another segment. To scroll the text in the window, use the Up Arrow, Down Arrow, Page Up, and Page Down keys.
Alternatively, of course, you may use the scroll bar. To see the address offsets of each instruction, select View | Address
Offsets from the main menu. To jump to any address location in the segment, select the View | Go To command, or use
the scroll bar thumb. The Go To command asks you for a hexadecimal address.

New to versions 1.1 and 1.2 is the View | Far Call Names command. This toggles between viewing far function
call names and the actual relocation values in CALL instructions (for example, you will typically see the numbers
0000H:0FFFFH). NOTE: This setting WILL affect the way the code is written to a file.

All labels take form of LxxxxH and DxxxxH, where xxxx is a 4-digit hexadecimal number equal to the offset of
the location being referenced. Labels with an 'L' prefix denote locations within the immediate code segment, and labels
with a 'D' prefix denote locations within a data segment. Labels within a code segment can either be procedure labels,
jump/loop labels, or data labels within the code segment. Assembler directives, while generated for source code text files,
are not shown in the display window.

Strings are detected and translated by WDASM whenever five or more visible characters occur within a data
segment.

The Set Byte command allows you to convert a desired range of bytes from byte declarations into instructions, or
vice versa, or to give labels to the specified range of bytes. This command is necessary for programs which have data
declarations in their code segments. ONE WORD OF CAUTION: All byte settings which you have made in a segment will
be lost when you exit a segment. You can save that segment (with the Save Current Segment Only option only) in a text
file first before quitting to save the changes. But if you quit the program and restart it, there is no way to restore the
previous byte settings except by doing it over again manually. If you use the Create Separate Files For Each Segment
option, you will lose your changes as well.

WDASM Windows Disassembler 1.0 Program Documentation 3

Generating An Assembly Language Source Code File

After you open a file, you can write the assembly language source code of that file to a new text file. If the file
name you specify is one that already exists, the specified file will be automatically overwritten with a new one. Three
options are available for generating a file(s). The first is to put all of the executable code into one file. The name of this
file will be the name you specify. The second option is to put each segment of the code into separate files. Each
segment's file name will be of the form yourname.nnn, where yourname is the name you specify in the dialog box, and
nnn is an integer corresponding to the segment's number. For example, if you specify \work\myprog.asm as the file
name, Windows Disassembler will generate files named \work\myprog.1, \work\myprog.2, \work\myprog.3, etc.. The
third option is to generate a file for the current segment only (which is currently being displayed on the screen). The file
name will have an integer file extension also.

All byte settings made with the Set Byte will be lost if you exit a given segment, or if you try writing all of the
segments to a file(s) at one time. However, if you save a single segment in a text file using the Save Current Segment
Only option, all byte settings will stay safe and will still be there after saving the segment.

The new file will contain tabs. To view the file in the way in which it was intended to be viewed, you should set
your editor's tab stop value to 8 spaces.

WDASM will automatically generate TITLE, .CODE, .DATA <segmentname>, .MODEL LARGE, .286, and
EXTRN <winAPIfunc>:FAR directives in the file. A relatively new feature is the automatic generation of PROC and ENDP
directives for all exported and far procedures. These directives will take the following form in the new source code:

Proceduren PROC FAR PUBLIC
(code)
RETF

Proceduren ENDP

where n is the ordinal number of the procedure in the entry table of the program's executable file header. Moreover, for far
calls to procedures within the program in a different segment, EXTERNDEF's are generated.

WDASM generates segment names of the form .CODE SEGn, where n is the segment number. In some cases,
you'll end up deleting the SEGn. This name is produced in order to help you identify a segment. However, if your
segments have been written to separate files then the name is optional (see the MASM programmer's guide). WDASM
assumes the program had a large memory model. If this assumption is wrong then you must delete one or two segment
names. Windows Dissassembler 1.2 translates functions belonging to COMMDLG.DLL and SHELL.DLG, and generates
useful information for unknown function calls. This information is in the form Module m Ordinal n. For example, the
occurance of an unknown far function call will cause an "Module m Ordinal n:FAR" statement to appear at the beginning
of the file, plus one or more "CALL Module m Ordinal n:FAR" statements in the code. You must look up these function
names using an executable-file header utility. (In other words, you must use the relocation table names and offsets
provided by an .EXE file header utility to determine the far function call/variable names in the assembly code.)

Finally, you must figure out the entry point (used by the END directive) using a .EXE file header utility as well, plus
make sure you have the appropriate .MODEL <type> directive and add some EXTRN's (or EXTERNDEF's) for any far
variables used by the program (typically the far variable __winflags is used by Windows programs, for example).

As an example, the files HELLO.EXE, HELLO.C, HELLO.DEF, HELLO.EXH, and HELLO2.ASM are included to
demonstrate disassembly using WDASM. HELLO.EXE (a "hello world" program) is a compilation of HELLO.C with
Microsoft QuickC for Windows. HELLO.EXH is an .EXE file-header listing for HELLO.EXE generated by EXEHDR.
HELLO2.ASM was generated using WDASM and was edited in order to change all occurances of Procedure1 to
WndProc, as well as to provide the symbols OFFSET WndProc, SEG WndProc, START (the entry point), and OFFSET
__WINFLAGS (using the information in an .EXE header file listing for HELLO.EXE). Also, the model type was changed to
SMALL, an EXTRN __WINFLAGS directive was added and the segment names SEG1 and SEG2 were deleted. You can
rebuild HELLO.EXE from HELLO2.ASM with MASM 6.0 by typing:

ML /c HELLO2.ASM
LINK /ALIGN:2 HELLO2,,HELLO2, libw slibcew, hello.def;

which will generate HELLO2.EXE.

WDASM Windows Disassembler 1.0 Program Documentation 4
Re-assembling medium, compact, and large model programs is slightly more complex than the example just

given. Without going into much detail, the simplest way to disassemble and reassemble a medium/large-model program is
to first save the segments in separate files (or modules). Then, in addition to the steps described above, do the following.
Make your data segment accessible to all modules by copying the contents of the data segment file to a new file and
converting it into an include file. This is done using an editor with regular expression finding/replacing capabilities and
replacing each occurance of "DxxxxH DB nnnnH" with an "EXTERNDEF DxxxxH:BYTE" and then saving the
file with an .INC extension. Then include this file (i.e., INCLUDE filebasename.INC) in each module that accesses the
data segment. (If there are two data segments, then there could be conflicting labels.) Finally, assuming you've got the
resource files, assemble each module and link. Otherwise, Borland's Resource Workshop can be used for obtaining the
resources, or any reverse resource compiler.

Differences Between Windows Disassembler 1.2 and 1.1

New Features
Version 1.2 enables the user to convert any range of bytes from data bytes to instruction bytes and vice-versa

before generating a file. In addition, WDASM now generates FAR PTR's, NEAR PTR's, and SHORT directives for CALL
and JMP instructions, in order to reproduce a program more precisely. WORD PTR's are also now provided for 16-bit
displacement bytes inside the brackets of indirect memory operands for the same purpose. Plus, the .MODEL directive
now has a default type of MEDIUM instead of LARGE, and the END directive is now supplied.

NOTE: A reminder message appearing every 4 minutes has been added as an extra incentive for registering (see
Registration form below).

Bug Fixes

(Bug fixes for version 1.1 are included here in addition to those for 1.2.)

Version 1.1: A bug concerning the translation of the LES instruction was corrected (version 1.0 accidently
skipped the two bytes which came after an LES). In addition, a bug previously existed concerning the calculation of an
API module's ordinal number. The effect was that function call names weren't provided for some programs. Finally,
WDASM's ability to detect null bytes - bytes having a value of zero which are usually stuck in the code before a procedure
- was expanded to include null bytes occuring between far calls and PUSH BP instructions.

Version 1.2: Bugs in the translation of PUSHF and BOUND have been corrected. (The 'F' was missing at the end
of "PUSHF" and "BOUND" was misspelled as "UN D".)

A Slight Bug In This Version

The screen will need refreshing sometimes after scrolling upwards, mainly within data segments, but sometimes
in code segments if you set some of the byte types. This bug is minor and will not affect file generation.

WDASM Windows Disassembler 1.0 Program Documentation 5
Registration

The single license fee for WDASM version 1.2 is only $10.00. This version, version 1.2, contains a reminder message for
registering the program which appears at 4 minute intervals. Registering this program entitles you to receive the actual
version of this program without the reminder message. Please fill out this form (or a reasonable facsimile thereof) and
send it with your check or money order for $10.00 to:

 Eric Grass (314) 928-7803
 1612 Gettysburg Landing
 St. Charles, MO 63303

 Date __________________

 Name __ Phone _________________

 Address __

 City __________________________________ State ________ Zip ____________

Please indicate which type of disk you use:

_______ 5.25'' ________ 3.5''

 Product: WDASM Windows Disassembler 1.2

 Total Price: $10.00

 Please make your check or money order payable to Eric Grass.

Comments, critiques and suggestions regarding Windows Disassembler 1.2 are welcomed and can be forwarded to the
above address.

WDASM Windows Disassembler 1.0 Program Documentation 6
License

This software is owned by Eric Grass and is protected by United States copyright laws and international treaty
provisions. You may by no means sell, rent, or lease this software, neither may you include it as part of any software
library which is distributed on a commercial basis for money without prior written permission from Eric Grass. You may not
modify it in any respect, including but not limited to, decompiling, disassembling, or reverse engineering the software. You
are free to copy and distribute this version of it for noncommercial use only if:

1. No fee is charged for use, copying, or distribution
2. It is not modified in any way
3. It is distributed in unaltered form, complete with all its original accompanying files.

WDASM may not be used in any unlawful or illegal manner. In particular, please note the copyright terms of the program
you process.

Warranty Disclaimer

Eric Grass disclaims all warranties, either express or implied, including, but not limited to implied warranties of
merchantability and fitness for a particular purpose, with regard to the software. Moreover, he will not be liable for any for
any errors or omissions contained herein, or for any special, incidental, consequential, indirect, or similar damages due to
loss of data or any other reason arising out of the use of or inability to use this product, even if Eric Grass has been
advised of the possibility of such damages. This includes, but is not limited to, computer hardware, computer software,
operating systems, and any computer or computing accessories. Everyone who uses this software does so at their own
risk.

Copyright
WDASM Windows Disassembler and this documentation are copyrighted (c) 1992 by Eric Grass. ALL RIGHTS

ARE RESERVED.

